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Abstract
By using the nonequilibrium Green’s function technique, we study the coherent
electron transport through a three-arm ring with two quantum dots embedded
in the upper and lower arm, but without a quantum dot in the middle arm.
Gate voltages and magnetic fields are used to tune the linear conductance
and the spin polarization at finite temperatures. Four transmission peaks and
two conductance dips due to the Fano interference and the on-site Coulomb
interactions are observed. The conductance spectra are shown to be sensitive to
the magnetic fluxes through the ring, the gate voltages applied in the quantum
dots and the Rashba spin–orbit interactions inside the quantum dots. It is found
that the spin-polarized conductance is generated by the cooperation of magnetic
fluxes and Rashba spin–orbit interactions. Moreover, the spin polarization can
be up to 100% when the magnetic fluxes and the Rashba spin–orbit interactions
are properly adopted.

1. Introduction

The presence of phase coherence of electrons passing through nanometer structures has
attracted remarkable attention during the past several decades. Since the Aharonov–Bohm
(AB) effect was realized in a mesoscopic metallic ring [1], there have been many studies on
the behavior of the persistent current and energy spectra in single ring [2], double ring [3],
Fibonacci ring [4], and multiarm ring structures [5]. On the other hand, due to the confinement
of electrons in the three spatial directions, there exist many novel features in transport through a
quantum dot (QD), such as the Kondo correlation [6] and the Fano resonance [7, 8]. These novel
features have been expected to explore the unknown territory of quantum transport. So far,
many physical phenomena, including the AB interference [7–10] and the influence of Coulomb
interactions on quantum coherence [11–14], have been investigated.

Recently, devices made of parallel-coupling double QDs [15–18] have been realized
experimentally, in which two QDs coupled via barrier tunneling are embedded in opposite arms
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Figure 1. Schematic diagram of a three-arm ring embedded with two QDs, separately, in the upper
and lower arms; there is no QD in the middle arm.

of an AB ring connected with the noninteracting leads to external reservoirs. These advances
have inspired a number of theoretical attempts to study the transport properties including the
resonant tunneling, asymmetric interference patterns, Kondo effect and so on, through two
or more QDs arranged in serial configuration [19, 20], parallel configuration [21–25], T-
shape configuration [26, 27], or triangular geometry [28] in the absence or presence of strong
Coulomb interactions, as well as with or without magnetic fields. Moreover, a substantial
amount of dissipationless quantum spin current which could be generated as a result of both
actions of electric field and spin–orbit (SO) interaction has been theoretically predicted [29].
Later, Sun et al [30] derived a general second quantization form for the SO interaction in the
spectral space, which is convenient for handling the SO effect, electron–electron interactions
and other interactions for systems with one or more semiconductor QDs.

In this paper, we study the quantum transport through a three-arm ring with one QD
embedded in the upper arm and one in the lower arm, but without a QD in the middle
arm. There are on-site Coulomb and Rashba SO interactions inside the QDs, and magnetic
fluxes through the two half-rings. With the help of the well-established many-body theoretical
method, i.e. the Keldysh nonequilibrium Green’s function (NEGF) formalism, we examine how
the gate voltages and magnetic fields affect the linear conductance and its polarization at finite
temperatures. The rest of this paper is organized as follows. In section 2, we describe the model
and present the basic formulas of the NEGF used to compute currents. The corresponding
numerical results for voltage- and flux-dependent conductances, and related analyses are given
in sections 3 and 4. Finally, a summary is presented in section 5.

2. Model and formulation

We consider an open three-arm quantum ring embedded with two QDs and threaded by two
different magnetic fluxes in the upper and lower half-rings as shown schematically in figure 1.
Two QDs are, respectively, embedded in the upper and lower arms, but there is no QD in
the middle arm. Inside the QDs, we consider not only the Coulomb interactions, but also the
Rashba SO interactions which affect the transport properties by means of the equivalent Rashba
fields in the phase factors. It is assumed that there are no Rashba SO and other interactions in
the middle arm.

The total Hamiltonian can be written as

H = Hleads + HQDs + HT. (1)

In the above equation, Hleads is the Hamiltonian of the left and right electrodes, and it can be
expressed by

Hleads =
∑

αkσ

εαkc†
αkσ cαkσ , (2)
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where c†
αkσ (cαkσ ) is the creation (annihilation) operator for a conduction electron with spin σ

and wavevector k at the α (α = L, R) electrode. HQDs describes the Hamiltonian of the two
QDs, each of which has one energy level εi and on-site Coulomb interaction with the constant
strength Ui ,

HQDs =
∑

iσ

εi d
†
iσ diσ +

∑

i

Ui d
†
i↑di↑d†

i↓di↓, (3)

where d†
iσ (diσ ) is the creation (annihilation) operator of an electron with spin σ in QD

i (i = 1, 2). The last term HT in equation (1) includes the contributions from the tunneling
effects between the electrodes and the QDs as well as between the electrodes directly through
the middle arm,

HT =
∑

ikσ

(tLi c
†
Lkσ diσ + c.c.) +

∑

kσ

[tR1ei(φ1+φ2)e−iσ kR l1 c†
Rkσ d1σ

+ tR2e−i(φ1+φ2)e−iσ kR l2 c†
Rkσ d2σ + tL Rei(φ1−φ2)c†

Lkσ cRkσ + c.c.], (4)

where tαi is the hopping matrix element between electrode α and QD i , and tL R is the coupling
between the electrodes via the middle arm. Since the Rashba SO interactions are taken into
account inside the QDs, they are equivalent to a spin-dependent phase factor −σkRli in the
hopping matrix elements, where li is the size of QD i , and kR ≡ m∗α0/h̄2, with m∗ and
α0 being the effective mass of an electron and the interaction coefficient, respectively. Here
we notice that the results are completely the same whether the strength of the Rashba SO
interaction kRli depends on the position or not. Two magnetic fluxes �1 and �2 are applied
in the upper and lower half-rings to change the phase factors, defined by φ1 = 2π�1/�0 and
φ2 = 2π�2/�0, with �0 = hc/e as the flux quantum. We would emphasize that the Rashba
SO interactions kRl1 and kRl2 as well as the magnetic fluxes φ1 and φ2 all appear in the phase
factors in equation (4), so they will contribute important phase coherence to the system, as will
be verified later.

With the Hamiltonian of the system described above, spin-dependent transport properties
can be obtained by the standard Keldysh NEGF technique. For our construction, the spin-up or
spin-down charge current flowing from the left lead to the center of the structure can be written
in the familiar form in the frequency representation [31]

Iσ = 2e

h̄

∫
dε

2π
Re

[
∑

i

tLi G
<
i Lσ (ε) + t̃L R G<

RLσ (ε)

]
, (5)

where t̃L R = tL Rei(φ1−φ2) and the lesser Green’s function (GF) G<
XYσ (ε) is the Fourier transform

of the time-dependent GF G<
XYσ (t) = i〈Y †(0)X (t)〉, X, Y = cαkσ , diσ . To obtain the current,

the main task is to calculate the retarded GF Gr
XYσ (ε), which is defined by the time-dependent

GF as Gr
XYσ (t) = −iθ(t)〈{X (t), Y †(0)}〉. When the retarded GF is solved, other GFs, such

as the advanced GF Ga
XYσ (ε), whose expression is the Hermitian conjugate of the retarded GF

and the lesser GF G<
XYσ (ε), can be easily obtained.

In our system, the retarded GF Gr
σ is a 4 × 4 matrix, and it can be calculated from the

Dyson equation

Gr
σ = (gr−1

σ − Σr
σ )−1. (6)

Here gr
σ is the GF of an ideal system without couplings between the electrodes and QDs and

between the electrodes through the middle arm, namely, the coupling matrix elements are all
assumed zero (tL R = tαi = 0). It is obvious that

gr
σ (ε) =

⎛

⎜⎝

−iπρL 0 0 0
0 −iπρR 0 0
0 0 gr

11σ (ε) 0
0 0 0 gr

22σ (ε)

⎞

⎟⎠ , (7)
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where ρL (ρR) is the density of states of electrode lead L (R) and

gr
iiσ (ε) = ε − εi − Ui + Ui 〈ni σ̄ 〉

(ε − εi)(ε − εi − Ui)
.

Here 〈ni σ̄ 〉 represents the average electron occupation number inside the QDs with the opposite
spin σ̄ . In this context, the mean-field treatment is used and the effect of the higher-order
self-energy terms on the transport properties is neglected. Thus, one can get the self-energy as

Σr
σ (ε) =

⎛
⎜⎜⎝

0 t̃L R tL1 tL2

t̃∗
L R 0 t̃R1 t̃R2

t∗
L1 t̃∗

R1 0 0

t∗
L2 t̃∗

R2 0 0

⎞
⎟⎟⎠ , (8)

where t̃R1 = tR1ei(φ1+φ2)e−iσ kR l1 , t̃R2 = tR2e−i(φ1+φ2)e−iσ kR l2 . It is reasonable, in the following
analysis, to adopt t∗

αi = tαi and t∗
L R = tL R .

With the result of Gr
σ (ε), the lesser GF G<

σ (ε) can be straightforwardly obtained from the
NEGF equation [14]

G<
σ = Gr

σ gr−1
σ g<

σ ga−1
σ Ga

σ + Gr
σΣ

<
σ Ga

σ , (9)

where g<
σ (ε) and ga

σ (ε) are, respectively, the lesser and advanced GFs related to the retarded
GF gr

σ (ε) in the ideal system, while Σ<
σ is the lesser self-energy containing all the information

of the inelastic processes. Actually, equation (9) includes two contributions on its right-
hand side: the elastic part described by the first term and the inelastic one expressed by the
second term. In the following treatment, we consider only the coherent transport; the inelastic
processes are not important, so we can simply take Σ<

σ = 0. In addition, gr−1
σ g<

σ ga−1
σ

is diagonal, with gr−1
αασ g<

αασ ga−1
αασ = 2i fα(ε)/πρ and gr−1

iiσ g<
iiσ ga−1

iiσ = 0, where fα(ε) =
1/[exp (ε − μα)/kBT + 1] is the Fermi–Dirac distribution function in lead α with μα as the
Fermi energy. As the last step, the intradot electron occupation number 〈ni σ̄ 〉 needs to be solved
self-consistently using the equation

〈ni σ̄ 〉 = −i
∫ +∞

−∞
dε

2π
G<

iiσ (ε). (10)

It is worth pointing out that the mean-field approach to the correlations has a limited range of
validity. In the present system, due to the weak couplings between the dots and the leads, the
charge fluctuations inside the QDs are small and can be ignored. Therefore, it is reasonable
to consider electrons hopping through the dots and interacting with the electrons with opposite
spins in the regime of small conductance.

In the next two sections, we apply the formalism of electrical current described above to the
differential conductance G = ∑

σ (∂ Iσ /∂V ) for a small bias voltage (V → 0). For simplicity,
and without loss of generality, in the following numerical calculations we assume the Fermi
energies of the source and drain μL = μR = 1, and also assume U1 = U2 = 5, ρL = ρR = 1
and kBT = 10−4. All the energies are scaled by a certain Fermi energy EF. The gate voltage Vg

will also be denoted as energy by neglecting the multiplying factor of the electronic charge e.

3. Conductance controlled by gate voltages

We first study the effect of the Rashba SO interactions inside the QDs on the linear conductance
in the absence of magnetic flux. The energy levels of the QDs are controlled by the gate voltages
(εi = Vgi ). We consider the two dot–lead couplings to be the same, and take tLi = tRi = 0.4
and tL R = 0.1. We further assume that the gate voltage of the upper arm QD is larger than
that of lower arm QD and set their energy level difference: Vg2 − Vg1 = 0.8. Figure 2 shows

4
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Figure 2. Conductance G versus gate voltage Vg = Vg2 = Vg1 + 0.8 for the different strengths of
the Rashba SO interactions.

Figure 3. Conductance G versus gate voltage Vg for Vg1 = Vg2 = Vg in the case of kRl1 =
kRl2/2 = kRl at different values of kRl.

the curves of conductance versus the gate voltage for different kRl(kRl1 = kRl2 = kRl). The
curves are dominated by four resonant peaks forming two pairs; each of them is split by a
remarkable dip. This result is obviously relevant to the discrete levels at the two QDs and the
on-site Coulomb interactions.

In the absence of the Rashba SO interaction (kRl = 0), there appear the typical
Fano resonance peaks resulting from the interference of two discrete states and one
continuum [7, 32]. Figure 2 clearly shows that the Rashba SO interactions strongly modify
the Fano resonances. The total conductances of the system display antisymmetry for kRl = 0
and kRl = π . A similar situation occurs for kRl = π/4 and kRl = 3π/4. However, for
kRl = π/2, the conductance is symmetric. The origin of this behavior can be ascribed to the
coherent electrons flowing through the upper and lower arms and the Rashba SO interactions
inducing the phase factors in the tunneling matrix elements in equation (4).

Compared with the above results, the situation becomes even more intriguing when the
SO interactions in the two QDs are unequal. We consider the case that the strength of the SO
interaction in the lower arm is greater than that in the upper arm, and take kRl1 = kRl2/2 = kRl.
The effect of the SO interactions on the four transmission peaks is strikingly different, as shown
in figure 3. Increasing kRl, the height of the two peaks on the left of the two dips decreases
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2 1.5 1 0.5 0

Figure 4. Contours of conductance G in the (φ1 + φ2)/2 and φ1 − φ2 planes for Vg1 = Vg2 = 0,
kRl1 = kRl2 = 0, tL1 = tR1 = 0.35, and tL2 = tR2 = 0.6.

rapidly; in contrast, the other two peaks on the right of the dips decrease slowly. This is due to
the fact that when the strengths of the Rashba SO interactions are varied, the phase shifts are
different for the carriers traveling through the upper, middle and lower arms and consequently
contribute different interference effects to the total transmission probability. In addition, the
linear conductance (in figure 3(e)) shows two valleys at the destructive interference condition
(kRl = π ) around Vg = −4 and 1; at the same time, transport is largely suppressed elsewhere.

4. Conductance controlled by magnetic fluxes

Now we turn to study the influence of the two magnetic fluxes φ1 and φ2, applied in the upper
and lower half-rings, respectively, on the conductance and polarization. At first, we neglect the
effect of the Rashba SO interactions inside the QDs on the transport of the system; that is to
say, we assume kRl1 = kRl2 = 0. Figure 4 is a plot of contours of conductance as a function of
(φ1 + φ2)/2 and φ1 − φ2 for Vg1 = Vg2 = 0. From figure 4 one can see that the conductance
spectra are strongly affected by both the total and relative values of the two magnetic fluxes,
and they oscillate periodically with the magnetic fluxes. The behavior can be validated from
the phase factors of the tunneling matrix elements in equation (4).

When the SO interactions inside the QDs are turned on, the current polarization emerges.
As usual, the polarization, resulting from the nonequilibrium of electrons with spin up and spin
down, is defined as η = (G↑ − G↓)/(G↑ + G↓). Figures 5 and 6 are the curves of conductance
and their corresponding spin polarization versus the magnetic flux for two configurations,
φ1 = −φ2 = φ and φ1 = φ2 = φ. The solid curves in figures 5(a)–(c) and 6(a)–(c) are for G↑
and the dashed curves are for G↓. Figures 5(a) and 6(a) show that when kRl = 0, both spin-up
and spin-down conductances are the same, so no spin polarization appears (see also the dotted
curves in figures 5(d) and 6(d)). In addition, the conductance spectra of these two magnetic
configurations present a distinct difference, denoted by the periodic emergence of subpeaks in
the latter, due to the influence of the total magnetic fluxes on the phase factors through the ring.
In figures 5(b), (c) and 6(b), (c) we find that when kRl 
= 0, a difference appears between the
spin-up and spin-down conductances, resulting in generating the spin-polarized conductance
(see also figures 5(d) and 6(d)). At the same time, one can easily observe from figures 5 and 6
that the spin-polarized conductance is strongly affected by the strengths of the SO interactions.
However, if φ1 = φ2 = 0, G↑ is equal to G↓, and the conductance polarization disappears,
in spite of the existence of the SO interactions. The reason for this result is explained as

6
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Figure 5. (a)–(c) Conductance G as a function of magnetic flux for Vg1 = Vg2 = 0, tL1 =
tR1 = 0.35, tL2 = tR2 = 0.6, φ1 = −φ2 = φ, and different values of Rashba SO interactions
kRl1 = kRl2 = kRl = 0, π/4, π/2, respectively. (d) Corresponding spin current polarization.

Figure 6. (a)–(c) Conductance G as the function of magnetic flux for φ1 = φ2 = φ and
different values of Rashba SO interactions kRl1 = kRl2 = kRl = 0, π/4, π/2 respectively.
(d) Corresponding spin current polarization. The other parameters are the same as in figure 5.

follows: when kRl 
= 0, the system still has twofold degeneracy for its spin states, which have
the same occupation probability, resulting in zero average of spin polarizations. As discussed
above, to generate the conductance polarization in our device, a combination of the Rashba SO
interactions and magnetic fluxes is necessary.

In order to further explore the effect of the two magnetic fluxes pierced in the upper and
lower half-rings on the polarization, in figure 7 we show a plot of the contours of polarization as
the function of (φ1 +φ2)/2 and φ1 −φ2 for Vg1 = Vg2 = 0, kRl1 = kRl2 = π/4. From figure 7,
one can clearly discover that the conductance polarization closely depends on the total and
relative values of two magnetic fluxes and its values vary from 1 to 0 (dashed–dotted line) and
then to −1 when either of the two magnetic fluxes changes. Meanwhile, it is interesting to note
that the current always cannot be completely polarized when (φ1 + φ2)/2 = nπ/2 (n being
an integer), whereas it can be fully polarized for any other value of the total magnetic flux.
The reason for this fact is interpreted as being that the spin-up (spin-down) electrons reach

7
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1 0.5 0 –0.5 –1

Figure 7. Contours of polarization η in the (φ1 + φ2)/2 and φ1 − φ2 planes for Vg1 = Vg2 = 0,
kRl1 = kRl2 = π/4, tL1 = tR1 = 0.35, tL2 = tR2 = 0.6.

destructive interference, and spin-down (spin-up) electrons reach constructive interference
under certain conditions, so that G↑(↓) = 0.

From the results obtained above, we can safely come to a conclusion that the conductances
and spin polarization of the outgoing currents in this device are predicted to depend on the
magnetic fluxes and the Rashba SO interactions. We are interested in the magnitude of the
transport current since the complete spin-polarized current can be obtained by tuning the
magnetic flux φi , SO interactions and the gate voltages of the two QDs. For example, in
the magnetic flux configuration φ1 = φ2 = φ, when Vgi = 0 and kRl = π/2, as shown
in figure 6(d) (solid line), the polarization η is as large as 100%. It is necessary to point out
that, in the present device, the spin polarization of current η is easily controlled by varying
the magnetic flux φ and gate voltage Vg, both of which can be accessible in experiment, thus
allowing the system to manifest the properties of a spin filter.

Here we would like to mention the related works by Tanaka et al [24] and Trocha et al
[25], who studied the system of coupled QDs with ferromagnetic leads, where the two dots
are connected via the interdot coupling. In their model, due to the interdot coupling, the
conductance spectrum is composed of a broad peak (if the intradot Coulomb interaction U 
= 0,
the broad peak is split into two) centered at the anti-bonding state and a narrow peak centered
at the bonding state with the characteristic Fano line shape. As a comparison, in our model, the
Fano resonance is split into four peaks resulting from the upper and the lower QDs’ discrete
levels as well as the intradot Coulomb interactions. Also, the generations of the spin-dependent
currents for both models are under different mechanisms: in the former, the spin-polarized
leads give rise to the difference in the densities of states between the spin-up and spin-down
conduction electrons, whereas in the latter, spin polarization arises from the combination of
the Rashba SO interactions inside the QDs and the magnetic fluxes through the half-rings. As
a result, the spin-dependent current is strongly modified by the Rashba SO interactions in the
latter, whereas it depends on the polarized strengths of the two leads in the former.

Finally, we would like to give a brief discussion of the possible realization of our system.
In this device, the proposed QDs are the gated ones and the are embedded in the upper and lower
arms of a AB ring which is penetrated by magnetic fluxes. The leads are coupled to the QDs and
to each other via a set of tunnel barriers whose coupled strength can be tuned. It is instructive
to estimate the experimentally relevant parameters, especially the Rashba SO parameter. In
fact, the Rashba parameter can be controlled electrically. For some regular semiconductors, the
Rashba SO interaction strength α0 can reach 3×10−11 eV m, so kR = m∗α0/h̄2 ≈ 0.015 nm−1

8
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for m∗ = 0.036me. If we take the typical length of a QD l = 100 nm, then kRl ≈ 1.5. Thus
kRl can reach a value ∼π

2 or even larger experimentally.

5. Summary

To sum up, we have investigated the spin transport in the system of a three-arm ring with two
QDs embedded in the upper and lower arms connected with electrodes based on the well-known
NEGF technique. Self-consistent numerical calculations have given us many interesting results.
Firstly, there are four conductance peaks due to the on-site Coulomb interactions and the two
QDs’ discrete levels. Secondly, the Fano line shape is strongly modified by the Rashba SO
interaction kRl. Thirdly, when there are no SO interactions inside the QDs, a sub-conductance
peak periodically emerges in the parallel magnetic configuration, whereas it does not appear in
the antiparallel configuration. Finally, when electrons move through the upper and the lower
arms, the Rashba SO interaction inside the QD induces a phase factor in the tunneling matrix
elements. By combination of the Rashba SO interactions and the magnetic fluxes, a remarkable
spin-dependent current appears. Meanwhile, the spin polarization of the outgoing currents
in this device are predicted to be depend on the external magnetic fluxes and Rashba SO
interactions. Consequently, tuning of one of these parameters allows the efficient control of
the direction and the strength of the spin polarization. Thus, this spintronic device is able to
demonstrate the properties of a spin filter.
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